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Abstract. The method used by Penrose and Smith to study the thermodynamic limit of the 
free energy of a system with Coulomb interactions and an applied field is examined for a 
simple cubic Ising model with pure dipole-dipole interactions in zero applied field. This 
free energy is related to the free energy at constant magnetization calculated in the usual way. 

1. Introduction 

The work of Ruelle (1963) and Fisher (1964) has shown that in the usual definition the 
thermodynamic limit of the free energy of a system of classical particles exists, provided 
that the interaction energy is both stable and weakly tempered. Classically, charge- 
charge interactions are not stable (Dyson and Lenard 1967) unless the particles have a 
strongly repulsive core, eg hard spheres. Furthermore, dipoleaipole and charge-charge 
interactions are not even weakly tempered. Griffiths (1968) and Lebowitz and Lieb 
(1969) have been able to show the existence of the thermodynamic free energy for classical 
systems with dipoleaipole and charge-charge interactions in zero applied field, 
provided that at small distances the potential is repulsive enough to ensure stability. 

2. The method of Penrose and Smith 

The thermodynamic limit for Coulomb systems in an applied field has been studied 
by Penrose and Smith (1972). Instead ofwriting the potential energy W ofa configuration 
of magnetic dipoles as a sum of dipole pair interactions, Penrose and Smith wrote 

4 . .  

where &2 is the domain to which the particles are confined and H(x) is the magnetic 
field strength in EMU. The field H is calculated from Maxwell's equations which reduce 
(in the current-free approximation) to V x H ( x )  = 0 and V . (H(x)+4nm(x)) = 0 where 
m(x)  is the total magnetic moment density at x. Penrose and Smith specify a unique 
solution to these equations in the domain R by applying the boundary condition that 
the normal component of the field H(x) at the boundary of R be equal to the normal 
component of the applied field H ,  at the boundary. Under these conditions they were 
able to prove that the limiting free energy exists and is convex in density and applied 
field. 
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We now restrict our attention to simple dipoles in a cubic domain rL of side L 
in zero applied field. In the magnetostatic case this means that there is no magnetic 
flux through the walls of the container. The container wall may be considered as made 
of an ideal superconductor. We consider N magnetic dipoles in the cube rL. We 
may replace the effect of the superconducting wall by considering not only the N dipoles 
in TL but a lattice of cubic regions of side L containing images of the dipoles in rL. 
The dipole mi = (mf, m;, mf) at ri = ( x i ,  y i ,  z i )  gives rise to the sets of images 

m; = (mf, m;, mf) at (2LI+xi ,2Lm+yi ,2Ln+zi)  = r;(I,m,n) 

m: = (- mf, e, mf) at (2LI-xi,  2Lm+yi ,  2Ln+zi) = m, n)  

mi3 (mf, - m;, mi) at (2LI + x i ,  2Lm - y i ,  2Ln + zi) r;(I, m, n)  

m? = (m;, m!, - mf) at (2LI+xi ,2Lm+yi ,2Ln-zi)  = r?(I,m,n) 

mi’ ( - m f ,  -m{,  mf) at (2Lf - x i ,  2Lm - y i ,  2Ln + zi) $ ( I ,  m, n)  

m6 1 -  = ( - m x  i ,  my i ,  - mf) (2LI-xi,  2Lm+yi,  2Ln-zi)  = rf(I, m, n) 

m! = (mf, -my, -mf) at (2LI+xi ,2Lm-yi ,  2Ln-zi)  = r:(l,m,n) 

at 

m? I -  = ( - m x  i ,  - my i ,  -mmf at (2LI-xi ,2Lm-yi ,2Ln-zi)  3 rs(I,m,n) 

for all values of the integers I, m and n .  If we study the statistical mechanics of the N 
dipoles in the original domain rL then we must include in the Hamiltonian not only the 
interaction of mi with mj but also the interaction of mi with the images of itself and with 
the images of mj, and likewise for the interaction of mj with mi, with a factor of4 to count 
the energies correctly. Using such a Hamiltonian in the normal prescription for statis- 
tical mechanics will then give the zero-field free energy in the formulation of Penrose 
and Smith. 

Recently Smith and Perram (1975a) have studied the sum 

and have shown that it may be written in the form 

(4) 

where the grad is taken with respect to the components of (x/L, y /L,  z/L) and 

“*((A, p, v) ; s) = I J du{u”- exp[ - nu(A2 + pz + v’)] w 1 

x 03(iAnu : iu)03(ipnu : iu)O,(ivnu : iu) 

+~*-~[e~@n:iu)O~(pn:iu)O~(vn:iu)- I]}. ( 5 )  

We use the form (4) to evaluate the interaction energies needed in our Hamiltonian. We 
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should note that the limit as L + CO of formula (4) may be shown to be 

the usual dipole-dipole interaction. 

3. Application to a simple Ising model 

For the rest of this paper we shall consider a very simple system, namely a simple cubic 
lattice of N Ising spins with unit spacing, so that N = L3. The only interaction between 
the spins is of the form (6) .  To study this system by the method of Penrose and Smith 
we consider arrays of images of the Ising dipoles as discussed above. The images repeat 
on a cubic lattice of side 2L, while the system we wish to discuss occupies a cubic domain 
of side L. An extension of the work of Smith and Perram (1975) shows that the energy 
of interaction of a dipole with its own images (the m' images of equation (2)) is zero. For 
Ising spins we may write (4) in the form 

with r = (x, y, z)/L and k the unit vector along the spin axis. Thus to obtain the Penrose 
and Smith free energy by using the dipole pair interaction energies, we must use in place 
of an energy like (6) an energy of the form 

and add in self-energies of the form 

The constants ak are L 1 and are found from the prescription in equation (2) for con- 
structing the images of a dipole. The self-energies in equation (9) correspond to the 
interaction of mi with the images mz, . . . , ma of itself. Note that in the limit as L + CO 

the potential V$)(ri, rj) becomes a potential like that in (6), while V{')(ri) has limit zero. 
Recently (Smith and Perram 1974) we have analysed a system with interaction 

energies similar to those in (8) and (9) by extending the methods of Lebowitz and Penrose 
(1966) and Gates and Penrose (1969) for Kac potentials. We can use exactly the same 
method to show that the free energy a*(T) of a cubic lattice of Ising spins with interaction 
energies (8) and (9) may be written as 

where tucked into one corner of it. 
The function ao(m) is the free energy at constant magnetization for a cubic lattice of Ising 
dipoles with the interaction (6) and no periodic boundary conditions. The minimization 
is over the class of functions Tdefined on the unit cube. If m(x)E Tthen Im(x)l < 1Vx E T. 

is the unit cube and T2 is a cube of side 2 with 
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The function m*(y) is the image on Tz of m(x) defined on r, the image being constructed 
according to the prescription in equation (2). We write y = (y, , y2, y,) and then for 

0 < y, < 4 0  < y, < l , o  < y, < 1; 

0 < y, < 1 , l  < y, < 2,o < y, < 1 ;  

1 < y, < 2,o < y, < 1,o < y, < 1; 

1 < y ,  < 2 , l  < y, < 2,o < y, < 1; 

m * W  = m(bJ19Yz,Y,)) 

m * W  = d Y 1 ,  2 - Y ,  9 Y 3 ) )  

m*69 = m((2 - Y 1 9 Y2 9 Y 3 ) )  

m*b) = ~((2--Y,,2--Y,,Y,)) 

0 < y ,  < 1,o < y2 < 1 , l  < y 3  < 2 ;  m*b) = -m((y1, y2, 2-y3)) 

(1 1)  
O < y , < l , l ~ y , < 2 , l < y , < 2 ;  m*b) = -m((yl, 2-yZ, 2-Y3)) 

l < y , < 2 , 0 < y 2 < 1 , 1 < y 3 < 2 ;  m*b) = -m((2-y1,y2,2-y3)) 

l < y , < 2 , 1 < y 2 < 2 , 1 < y , < 2 ;  m*b) = -m((2-y1, 2-y2, 2-y3))a 

Equation (10) now provides a connection between the free energy of Penrose and 
Smith and a more usual free energy ao(m). The result relies on the assumption that the 
function ao(m) exists. While we have no proof of the existence of ao(m) this assumption 
does not appear to be physically unreasonable. 
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